SWBAT write and solve absolute value inequalities and graph solutions on a number line.

Case #1: Less Than <

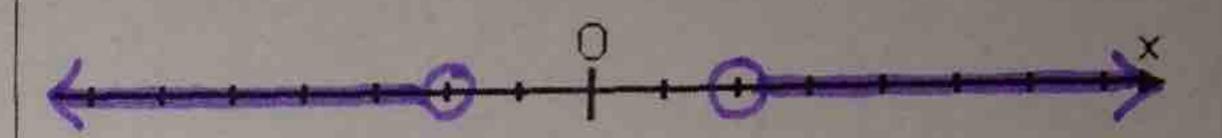
Suppose you're asked to graph the solution to |x| < 3. The solution is going to be all the points that are less than three units away from zero. Look at the number line:

Translating this picture into algebraic symbols, you find that the solution is (-3, 3)

This pattern for "less than" absolute-value inequalities always holds: Given the inequality | x | < a, the solution is always of the form -a < x < a. Even when the exercises get more complicated, the pattern still holds.

Case #2: Greater Than >

The other case for absolute value inequalities is the "greater than" case. Let's first return to the number line, and consider the inequality |x| > 2.



Translating this picture into algebraic symbols, you find that the solution is $(-\infty, -2) \cup (2, \infty)$ That is, the solution is TWO inequalities, not one. DO NOT try to write this as one inequality.

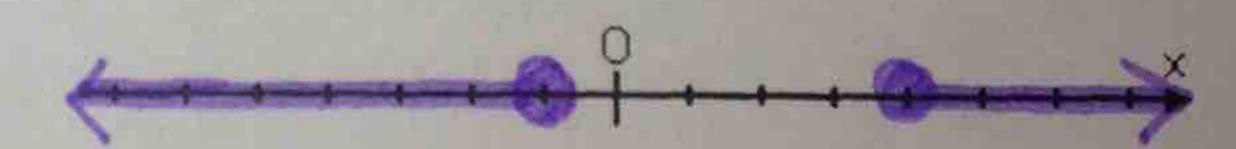
The pattern for "greater than" absolute value inequalities always holds: the solution is always in two parts. Given the inequality | x | > a, the solution always starts by splitting the inequality into two pieces: x < -a or x > a.

Example 1: Solve and graph the solution on a number line: |2x + 3 | < 6

All the values of x that make 12x+3/ less than 6 units from zero.

Example 2: Solve and graph the solution on a number line: $|2x-3| \ge 5$

$$2x-34-5$$



Spec	ial Case	#1:	Less than a N	egative
	Exa	mple	: x + 2 < -1	
Solution:	NO	So	lution	
			0	×

No prosolute value will end up negative, nor less than a negative. Special Case #2: Greater than a Negative Example: |x-2| > -3

Solution: All real #5 (-00,00)

All A.V. will be positive, and all positive #s are bigger than any negative Practice: Solve and graph each solution on a number line.

a)
$$|-9+p|+5<24$$

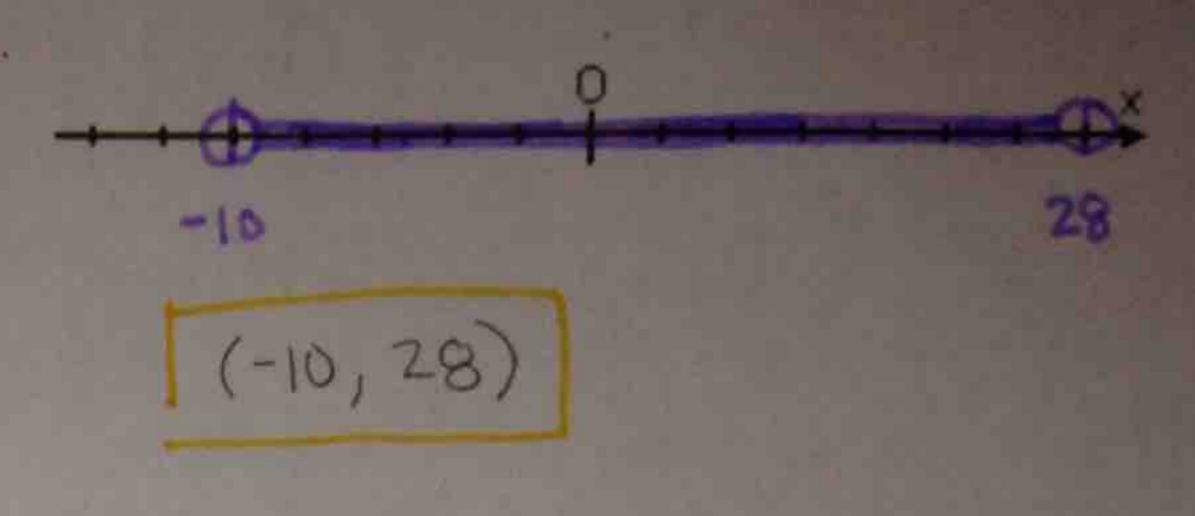
 $|-9+p|<19$
 $-9+p<19$
 $-9+p>-19$
 $p<28$
 $p>-10$

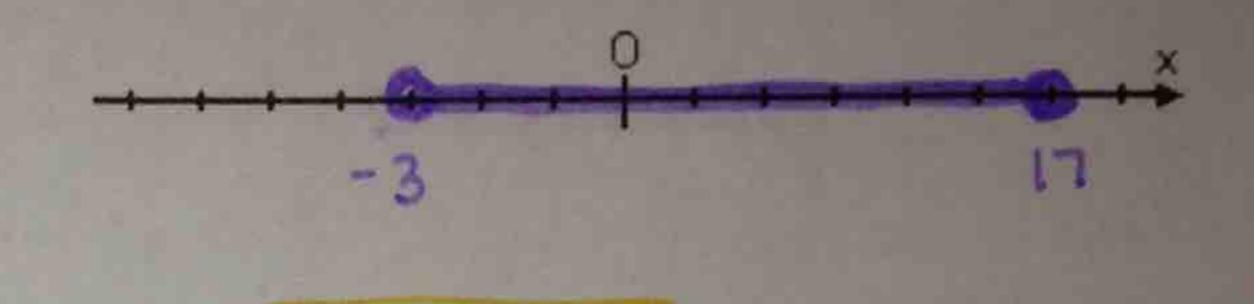
b)
$$|7-x|+2 \le 12$$

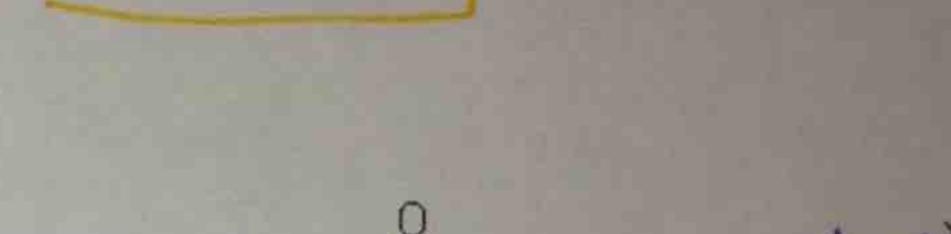
 $|7-x| \le 10$
 $|7-x| \le 10$

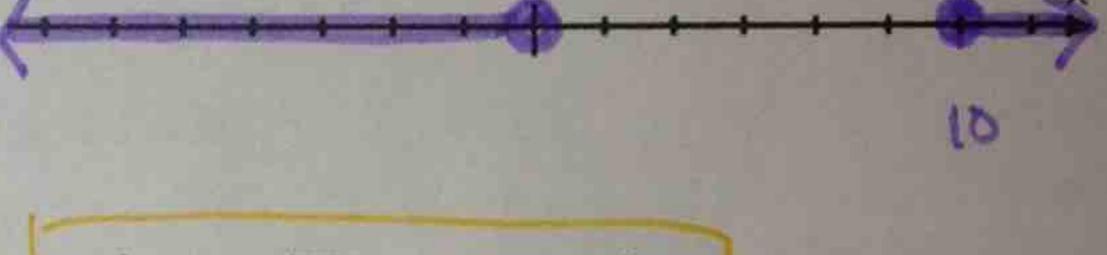
c)
$$|5-x|+4\ge 9$$

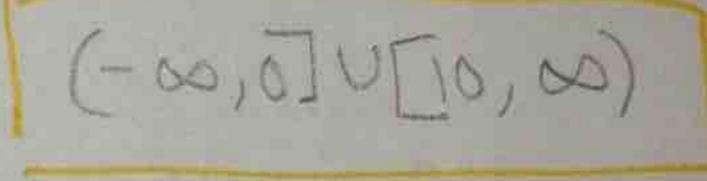
 $|5-1\times1\ge 5$
 $5-1\times \ge 5$
 $5-1\times \ge 5$
 $-1\times \ge 0$
 $\times \le 0$
 $5-1\times \le -10$
 0











[-3,17]

Tolerance Word Problems:

| actual - ideal | < tolerance

Example 3: A carpenter is using a lathe to shape the final leg of a hand-crafted table. In order for the leg to fit, it needs to be 150 mm wide, allowing for a margin of error of 2.5 mm. Write an absolute value inequality that models this relationship, and then find the range of widths that the table leg can be.

$$|x-150| \le 2.5$$

 $x-150 \le 2.5$
 $x-150 \le 2.5$
 $x \le 152.5$
 $x \ge 147.5$

147,5mm = X = 152,5 mm

Example 4: A manufacturer allows a maximum of 18.5 oz of cereal and a minimum of 16.25 oz of cereal per box. Write an absolute value inequality that demonstrates the manufacturer's constraints.

15,407 £ x £ 16.607